Towards a phonology of Proto-Kwa: onwards from Stewart’s “Potou-Akanic-Bantu”
Mary Esther Kropp Dakubu

The most ambitious phonological reconstruction of a major Kwa group has been carried out by a scholar who rejected Kwa as a Niger-Congo subgroup, John M. Stewart. His work relates just one of the Kwa families, Potou-Tano/Potou-Akanic, to Bantu and therefore to Benue-Congo, discarding any intermediate Kwa node. If Kwa is to be established as an autonomous linguistic genetic entity, it must be possible to show that the sound change rules by which Stewart (2002) derives proto-Potou-Tano and proto-Tano from the most recent common ancestor of proto-Potou-Tano and proto-Bantu (proto-PotouTano-Bantu/Potou-Akanic-Bantu) can accommodate the other Kwa families. Stewart (2002) is thus the starting point for the present study, and the reconstructions presented therein for proto-Potou-Tano are taken as given.

The following tree represents the hypothesis to be tested (ignoring any other nodes, such as Benue-Congo):

```
      Proto-PTB
     ├── proto-Bantu
     │     ├── proto-PTGTM-Gbe-GD
     │     └── proto-Bantu
     └── proto-PT
         ├── proto-GTM
         │    ├── proto-Gbe
         │    └── proto-GD
         └── proto-PT
              └── proto-GD
```

Consonant correspondences in root-initial syllables.

The discussion compares consonants reconstructed for proto-Potou-Tano with cognate forms in the other languages. Four bilabial consonants are reconstructed for proto-Kwa: *ɓ, *b, *p and *ɸ. (Series numbers refer to the data.)

Kwa *ɓ > PT *ɓ, GTM *b. (Series 1a)
 > Gbe *Xv ≈ V, where V was –High, -Low, +ATR, and *v alternating with *b (conditioning uncertain) elsewhere.
 > GD *m ≈ V₁C₂V, where V₁ was +High and +Spread (*i) and C₂ was nasal, and *b elsewhere.

Kwa *b > PT *b, GTM *ɸ, Gbe *Xv, GD *p. (Series 1b)

Kwa *p > PT *p, GTM *p, Gbe *f, GD *h². (Series 2a)

Kwa *ɸ > PT *p, GTM *p, Gbe *X, GD *f. (Series 2b)
Five velar stops are reconstructed, proto-Kwa *kʷ, *k, *g, *gʷ, *ɠ :
Kwa *kʷ remained unchanged in Potou-Tano but became voiced in GD and before spread vowels in GTM and Gbe. This voicing was accompanied throughout by a shift from labio-velar to labialized velar articulation, ie. gb. (Series 3)
Kwa *k remained unchanged in proto-Potou-Tano but lost the implosive feature everywhere else, eventually losing it in Tano as well. In GTM it became *kp or *kʷ – the evidence is unclear. In Gbe, to interpret the admittedly scanty evidence, it became *Hʷ before a + Low –Nasal vowel, *k before a nasal vowel, and was voiced before a + Spread –Low vowel. In GD it became *h or *hʷ – it is not certain that these two items can be clearly distinguished in proto-GD. (Series 5)
Kwa *g remained unchanged everywhere, although it eventually lost voicing in Tano. (Series 4)
Kwa *gʷ remained unchanged in Potou-Tano, apparently merged with *k in GTM, became gb in Gbe, thus partially merging with *kʷ, and became *w in proto-GD before + Low and –Spread vowels, but gb before + Spread –Low vowels. (Series 6)
Kwa *ɠʷ remained unchanged in proto-Tano, although in proto-Tano it later became *gw, at least before a –Spread –Low vowel. Elsewhere, articulation moved forward, from velar to alveolar. In GTM it appears also to have lost voice. In Gbe it became *ɖ and in GD it was palatalized. (Series 7)

It appears that proto-Kwa had two voiced alveolars in complementary distribution, with *d before oral vowels and *t before nasal vowels. The first became proto-PT *d, Gbe *ɖ and *t in both GTM and GD. It appears that *t was first denasalized in the environment given by Stewart’s (2002: 210) Rule 6.2.5, in all of Kwa, and later in all other environments in Gbe and GD.
The voiceless plain alveolar stop, proto-Potou-Tano *t became *s in Tano and corresponds to proto-Ga-Dangme *s, but remained t in GTM and Gbe (series 10). All reflexes occur before + Spread, -Low vowels. However in another series (11), derived from Proto-PotouTano-Bantu *t, all Kwa groups have t.
Tentative reconstruction of four Kwa alveolar and palatal voiceless obstruents:
Kwa *t > PT *t, GTM *t, Gbe *t, GD *t (series 11)
Kwa *t > ?PT *d, GTM *t, Gbe *t, GD *f (series 12)
Kwa *c > PT *t, GTM *t, Gbe *t, GD *s (series 10).
Kwa *s > ?PT *c, GTM *ts, Gbe *s, GD *s, Ega s (series 13)

The bilabial nasal consonant *m, reconstructed by Stewart for PT and PT-B, is maintained throughout Kwa, see series 14. The alveolar nasal *n (series 15) is similarly maintained throughout.
Stewart (2002) also reconstructs a proto-PotouTano-Bantu velar nasal continuant *ʪ, see series 16. It is suggested that PTB *ʪ and particularly PT *ʪ were not simple velar continuants but included a palatal feature. The changes can then be seen as favouring the velar or the palatal feature, depending on the environment:

Kwa *ʪ > PT *ʪ (unchanged).
Kwa *ʪ > Gbe *w (ɣ) before a + Spread –Low vowel, *y elsewhere.
Kwa *ʪ > GD *w before a –Spread vowel, *y before a + Spread (and –Low) vowel.

Summary of consonants reconstructed for proto-Kwa.

<table>
<thead>
<tr>
<th>Stops</th>
<th>Bilabial</th>
<th>Alveolar</th>
<th>Palatal</th>
<th>Velar</th>
</tr>
</thead>
<tbody>
<tr>
<td>plain</td>
<td>b</td>
<td>d’</td>
<td>g</td>
<td></td>
</tr>
<tr>
<td></td>
<td>p</td>
<td>t</td>
<td></td>
<td></td>
</tr>
<tr>
<td>lab’d</td>
<td></td>
<td></td>
<td>gʷ</td>
<td></td>
</tr>
<tr>
<td>pal’d</td>
<td></td>
<td></td>
<td>t’</td>
<td></td>
</tr>
<tr>
<td>impl</td>
<td>b</td>
<td></td>
<td></td>
<td>f</td>
</tr>
<tr>
<td>impl, lab’d</td>
<td></td>
<td></td>
<td></td>
<td>gʷ</td>
</tr>
<tr>
<td>Affricates</td>
<td></td>
<td></td>
<td>c</td>
<td></td>
</tr>
<tr>
<td>Fricatives</td>
<td>φ</td>
<td>s</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Continuants</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>oral</td>
<td></td>
<td></td>
<td></td>
<td>ᱏ</td>
</tr>
<tr>
<td>nasal</td>
<td>m</td>
<td>n</td>
<td></td>
<td></td>
</tr>
<tr>
<td>lateral</td>
<td></td>
<td></td>
<td>ñ</td>
<td></td>
</tr>
</tbody>
</table>

Vowel correspondences in root-initial syllables

Only five oral vowels and four nasal vowels can so far be reconstructed, even though all groups show evidence of larger systems and traces of cross-height vowel harmony, see vowel series 1 through 8.

<table>
<thead>
<tr>
<th>a</th>
<th>i</th>
<th>u</th>
<th>ɑ</th>
<th>ɪ</th>
<th>ɨ</th>
<th>ʊ</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

High

Low			+	-	-	-	
Advanced	-	+	-	-	+	-	
Spread	+	+	-	-	+	+	
Nasal	-	-	-	-	+	+	+
Tentative conclusions

The “Kwa hypothesis” is partially vindicated. We have noted two common innovations to all sub-groups: denasalization of root syllables with continuants as initial consonants, see series 9, and the shift from proto-PotouTano-Bantu implosive alveolar unvoiced stop *tʃ to the non-implosive Kwa *t. The first shift is complex, and depends on a rather small amount of data. The second is perhaps stronger, but the shift away from implosion is very general and undoubtedly happened elsewhere, and a more extensive investigation with more data than is presently available is needed to secure it as an exclusively Kwa innovation (or not). Three consonants not reconstructed by Stewart (*tʃ, *t, *s) were proposed to account for correspondences between Akan or Tano and the other groups. Otherwise, the Kwa consonants reconstructed appear to be identical with those of proto-PTB.

There is also a certain amount of support for subgrouping GTM (or part of it) with PT (series 2b, 10). Gbe remains a problem. A more satisfactory and complete reconstruction of the vowels depends on more detailed internal reconstruction within the subgroups, especially Gbe and GTM.

References, Sources and Finding Aids

Stewart, John M., 1996. Nasal vowel creation without nasal consonant deletion, and eventual reduction to non-distinctive status of vowels thus created, with special reference to pre-Bantu. Paper circulated at Round Table on Bantu Historical Linguistics, Lyon, May-June; revised version August.

